Full Wave Bridge Rectifier Circuit Working and Application

Full Wave Bridge Rectifier Circuit

The Full Wave Bridge Rectifier Circuit is a combination of four diodes connected in the form of diamond or a bridge as shown in the circuit.

However,

The full wave rectifier circuit does rectifies the AC voltage into DC voltage.

But, The pulse character is still intact in the converted/rectified dc Voltage in the form of ripple of a half pulse as shown in the wave form below.

In order to get rid of the remaining positive pulse in the obtained DC Voltage you must use a filter circuit or a capacitor which reduces the repel and brings our dc voltage wave form to straight line.

Note : Reducing the pulse completely from the Pulsated DC voltage is very much impossible in practical.

Also see Half Wave Rectifier

The Full wave Rectifier Circuit can be seen in a large number of applications from mobile-laptop chargers to power supply for various machinery. 

Full Wave Bridge Rectifier Circuit

Full Wave Bridge Rectifier Circuit

Components of Full Wave Bridge Rectifier Circuit

Working of Full Wave Bridge Rectifier Circuit

This bridge rectifier circuit works on a simple mechanism.

  • A step down transformer is used in order to step down or decrease the high voltage AC into Low voltage AC.
  • Transformer’s secondary winding is connected to the opposite points of the bridge made up diodes. The secondary output of the transformer is connected at a point where both the anode as well as cathode of the diode lies.
  • All the four diodes are connected in such a way that they form a passage which allows only one side of the AC voltage or pulse and converts the negative part of it into positive voltage or pulse.
  • The DC voltage output of the bridge rectifier circuit is obtained from the points where both the diodes are connected either from anode or cathode. The anode becomes the positive part as well as cathode becomes the negative part of the DC voltage output
  • The output voltage of the bridge rectifier is not a constant/straight DC voltage but does have a pulse which is then reduced with the help an electrolytic capacitor which acts as a filter to Pulsated DC voltage.
  • The efficiency of bridge rectifier lies on how minimum amount of pulse it has after the filter is applied into the pulsated output.
  • The full wave Bridge Rectifier Circuit is complete as the capacitor or a filter is applied to decrease the pulse and the voltage is then used for various purpose.

Full Wave Bridge Rectifier Circuit Theory Explained

The working of the full wave Bridge Rectifier Circuit is divided into two cycles which is then filtered in order to reduce the pulse or the repel on the DC voltage.

The two cycles of the Full wave bridge rectifier are classified below:

  1. First half cycle
  2. Second half cycle
Full Wave Bridge Rectifier characteristics

Full Wave Bridge Rectifier characteristics

Also watch FM transmitter circuit with 3km Range

First half cycle

  • The output voltage of the secondary winding of transformer is in the first half of the wave that is positive side of the AC voltage.
  • In this condition, two of the opposite diodes are connected will go in forward-bias and the current flows. Other two opposite diodes connected in the circuit will go in reverse-bias, so current would not flow through those.
  • During this cycle the first half of the AC voltage is obtained as a half positive pulse of our desired DC voltage.
  • Until the first half cycle the path of the current remains from the anode of the first forward biased diode to the cathode of the another.
  • As the output voltage of the transformer drops to the zero voltage the first half cycle of the bridge rectifier circuit is completed.

Second half cycle

  • Second half cycle works as the opposite of the first half cycle.
  • In the second half cycle of the output AC voltage from the secondary winding of the transformer the opposite diodes are in forward bias (other than the diodes which are in forward bias in first half cycle).
  • In the second half cycle the negative part of the AC voltage flows through the forward biased diodes leaving the rest of the two in reverse bias which were forward biased in first half cycle.
  • During the second half cycle the path of the flow of current becomes from the anode of the first forward biased diode to the cathode of the another, which ultimately follows the same direction of current as it was in the first half cycle.
  • During this cycle the second half that is negative part of the AC voltage is obtained as a another half positive pulse of our desired DC voltage.

The two cycles that is the first and the second half cycle combines and become a DC voltage.

However,

The generated DC voltage has Pulse or ripple property which makes it less useful when it comes to use it as a proper power supply in various applications.

The remains of the pulse or ripple in the DC output of the full wave bridge rectifier bridge is then rectified with the help of a capacitor.

After using the capacitor the ripple is reduced, the reduction of ripple depends on the rating of the capacitor (in µF mostly) used to filter the DC voltage.

Peak voltage is obtained and the output voltage is generated.

Applications of the Full Wave Bridge Rectifier Circuit

  • Full Wave Bridge Rectifier is used to detect the amplitude of the modulating radio signal.
  • Bridge rectifier circuits are also used to supply steady and polarized Dc voltage in the electric welding.
  • The Bridge Rectifier circuits are widely used in power supply for various appliances, as they are capable of converting the High AC voltage into Low DC voltage.
  • Full wave rectifiers are also used for powering up the devices which work on DC voltage like motor and led.

This full wave bridge rectifier circuit is used more than the other rectifier circuits due to its huge number of advantages over others.

Also watch Wheatstone Bridge Principle and Application

Summary
Full Wave Bridge Rectifier Circuit Working and Application
Article Name
Full Wave Bridge Rectifier Circuit Working and Application
Description
Wherever steady and smooth DC voltage is required, Full Wave Bridge Rectifier is used. The circuit produces a purely DC output voltage.
Author
Publisher Name
EEE Projects
Publisher Logo
  •  
    2
    Shares
  • 2
  •  
  •  
  •  
  •  

This article has 2 comments

  1. alokita mathur Reply

    very informative article ! Thank you for sharing this!




    1
  2. Brilligoat Reply

    What would be the difference between the bridge rectifier and the full wave rectifier ?




    0

Leave a Comment

Your email address will not be published. Required fields are marked *